TitleAn Ecosystem-Level Perspective on the Host and Symbiont Traits Needed to Mitigate Climate Change Impacts on Caribbean Coral Reefs
Publication TypeJournal Article
Year of Publication2014
AuthorsOrtiz JCarlos, Gonzalez-Rivero M, Mumby PJ
Date PublishedJan
Type of ArticleArticle
ISBN Number1432-9840
Accession NumberBIOSIS:PREV201400290473
Keywords(Environmental Sciences), 04500, Mathematical biology and statistical methods, 07504, Ecology:, 07506,, 07508, Ecology: environmental, 07512, Ecology: environmental biology - Oceanography, 10515, Biophysics - Biocybernetics, 64008, Invertebrata: comparative,, Algae, Algae, Microorganisms, Nonvascular Plants, Plants, Animals, Invertebrates, biology - Animal, Caribbean, climate change, symbiosis, coral reef, greenhouse gas emission, thermal, Climatology, Cnidaria [41000], Ecology: environmental biology - Plant, ecosystem modeling, environmental biology - Bioclimatology and biometeorology, experimental morphology, physiology and pathology - Cnidaria, Marine Ecology (Ecology, Environmental, mathematical and computer techniques, Models and Simulations (Computational Biology), Neotropical region, Plantae, Sciences), tolerance, host trait, ecosystem-level perspection, West Indies, [13000], [coral] [Montastraea], [macroalgae]/Invertebrata, Animalia
AbstractCaribbean reefs have steadily declined during the past 30 years. Thermal disturbances that elicit coral bleaching have been identified as a major driver of such coral degradation. It has been suggested that either the evolution of more tolerant symbionts, or shifts in the distribution of existing, tolerant symbionts could ameliorate the effect of rising sea temperatures on Caribbean reefs. Using a spatial ecosystem model we describe the characteristics that new tolerant symbionts, 'super-symbionts', and their coral hosts, require for coral cover to be maintained. We also quantify the time necessary for such symbionts to become dominant before their potential beneficial effect is lost. Running scenarios under two levels of greenhouse gas emissions, we find that aggressive action to reduce emissions could almost triple the time available for new super-symbionts to become dominant and potentially mitigate the effect of thermal disturbances. The benefits of thermally tolerant super-symbionts depend on the life-history traits of the host, the number of coral species infected and the present coral assemblage. Corals that are strong competitors with macroalgae are likely to become dominant on future reefs if a super-symbiont appears in the next 25-60 years. In principle, super-symbionts could have ecosystem-level benefits in the Caribbean providing that they become dominant in multiple coral hosts with specific life-history traits within the next 60 years. This potential benefit would only be realized if the appearance of the super-symbiont is combined with drastic reductions of greenhouse gas emissions and maintenance of ecosystem processes such as herbivory.